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The Larmor radiation formula relates the momentum radiated toward infinity 
along a light cone from a single point charge to the velocity and acceleration of 
the particle. The formula applies only to a light cone whose apex is on the world 
line of the particle. This paper generalizes the Larmor formula to an arbitrary 
light cone. An example involving circular motion is worked. 

1. I N T R O D U C T I O N  

The Larmor  radiation formula says that if a particle with electric charge 
e moves along a world line za(  " ) parametrized by its arc length, then 

~e2(ZbZb)Za= lim lim c ~ Ta b dora (1.1) 
R~oo  ~ 0  ~ JSR 

where T "b is the energy-momentum tensor. Assuming that Za(0)=0 ,  the 
surface SR is a cylinder parallel to the timelike vector I a defined by ! a = za(o) .  
I will denote the forward light cone with apex at a by L+(a) ,  and the 
backward light cone by L - ( a ) .  The edges of  the cylinder SR are on the light 
cones L+(0)  and L§ The edge of  SR that is on the light cone L§ is 
the intersection of the hyperplane X"L = R with the cone L§ With these 
assumptions the field on the L+(0)  is completely determined by Z~(0) and 
by za(0). 

This paper  generalizes the Larmor  result by removing the condition 
za(o)  = 0. Without this condition it is no longer true that  the field on L § (0) 
is determined by only za(0) and ~,"(0). In this case, the field on L§ is 
determined by the portion of the world line that is spacelike=separated from 
the origin (Willis, 1989). I will assume that the world line intersects both the 
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forward and backward light cones with apex at 0. Thus, if r -  are defined 
by za( I ' •177  with r -  < r +, then the field on L+(0) is determined by 
the finite portion of the world line Za(r) with r e [ r - ,  r+].  

In this case, it is reasonable to assume that the radiated momentum can 
be expressed as an integral over the finite portion of the world line that is 
spacelike-separated from the origin. This paper gives such a result. 

2. PARAMETRIZATION OF Sn 

In order to express the radiated momentum as an integral over the 
world line, it is necessary to parametrize the surface SR using the retarded 
proper time of  the world line. If  xa~sR,  then the retarded proper time r is 
defined implicitly by 

[X a -- z a ( I ' ) ]  [Xa - Za(I- ) ]  : 0 (2 .1)  

The other two parameters are an angle tp and a length s. The parameter s 
will generate the lateral portion of  SR. Since the cylinder SR axis is the 
timelike vector I a, the parametrization has the form 

x a ( r a  (p, S) ~ - -ua( r ,  q~) +sl a (2.2) 

The function U a parametrizes the two-dimensional surface formed by the 
intersection of  the cone X~Xa = 0 and by the hyperplane Xala = R. Thus the 
vector U a must satisfy 

W ( r ,  q~)Ua(r, q~)= 0 (2.3a) 

[ u a ( T ,  ~0) -- za(z)][Ua(TJa q)) - Za( l ' ) ]  = 0 (2.3b) 

u a ( T ,  ~0)la : R (2 .3c)  

Equation (2.3b) simplifies to 

- 2 U a Z a  + ZaZa = 0 (2.4) 

Equations (2.3c) and (2.4) imply that the vector U a can be expressed as 

U a = W a + p l R a + p 2 S a  (2.5) 

where Wa~span{Za(r),  la}, the vectors R a and S a are perpendicular to 
span{Za(r),  la}, and Ra_l_ S a. Since both R a and S ~ are perpendicular to the 
timelike vector 1 a, it follows that R a and S a are spacelike. I will assume that 
they are normalized so that 

R~Ra = -1  (2.6a) 

SaSa = --1 (2.6b) 

SaRa = 0 (2.6c) 
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Since S a is spacelike, it is consistent to require it to be perpendicular to the 
timelike vector ZL Thus, S a is perpendicular to the vectors Z a, Z a, and V. 
So, S a is given by 

sa =--1 F abCdZbZcld (2.7) 
dl 

The constant d~ is determined by the normalization condition S ' S ~ = - 1 .  
The vector R ~ is perpendicular to Z ~, I a, and SL Therefore, R ~ is given by 

Ra = 1 ,o, abCdZbScl d (2.8) 
d2 

where the constant d2 is determined by the normalization condition 
RaRa = - - 1 .  

The condition U"U~ = 0 restricts the scalars/~1 and/~2 [see Eq. (2.5)]. 
This condition is 

/~12 +/z~ = WaW. (2.9) 

Solving the linear equations for W gives the result 

Z 'Za 
WaWa-- (2.10) 

(Zala) 2 - ZaZa 

I now define the angle r by 

/~1 = (waw~) 1/2 cos(~p) (2.1 la) 

/~2 = (waw~)~/2 sin(tp) (2.1 lb) 

where ~p~[0, 27r). Thus, the form of the parametrization is 

X~ ~p, s) = W'(~) + (W~W~) ~/2 

• [cos(tp)Ra(v)+sin(qg)S"(z)]+sl" (2.12) 

In the next section the Jacobian of this parametrization will be computed. 

3. THE JACOBIAN 

In this section the Jacobian ja given by 

ja = • eabcdzb,~Xc,cXa, s (3.1) 

will be computed. The sign of j" is chosen so that it is an outward normal. 
This task of  computing ja is simplified by using the fact that the direction 

of ja is independent of  the particular parametrization. Using a simple 
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parametrization of Sn,  one can show that there is a scalar �9 so that 

ja  = ( i ) [ X  a __ (Xblb)V] (3.2) 

Since the limit as e ~ 0  is to be evaluated [see Eq. (1.1)], it follows that 
needs only to be computed to nonvanishing order in e. Simplifying jaXa 
shows that * is given by 

jaXa (3.3a) • 

= • ~ cabcdX~ s (3 . 3 b )  

The partial derivatives of X a with respect to r and q) are determined by 
implicit differentiation of the equations 

XaXa = 0 (3.4a) 

X~la = R (3.4b) 

XaZa:lZaZa (3.4c) 

XaZa = WaZ~ + (W~W~)a/2R~2;, cos(q)) (3.4d) 

Defining the scalars a(r)  and b(r) by 

a(r)  =WoZ,  (3.5a) 

b(r) = (WbWb)l/2aaZa COS(q)) (3.5b) 

the required derivatives of X can be expressed as combination of the vectors 
A a, B ~, and C a defined by 

A " =  eabcdXbZcs (3.6a) 

B ~= e"bCdXbZcld (3.6b) 

C a :  ,ffabcdXbZcl d (3.6c) 

The derivatives also involve scalars p, q, and A defined by 

A = EabCdlaXbZcZd (3.7a) 

p = (X ~ - Z")Z~ (3.7b) 

q = (X ~ -  Z")Za (3.7c) 
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I find that 

xo, =p_B +1 A a A [q -  d-/~ cos(~p)]C, (3.8a) 

Xa,~ = b sin(~0) (3.8b) 

Xa,s=L (3.8c) 

Simplifying (I), I find that 

bo 
(I) = - ' -  sin(tp) (3.9) 

A 

This can be further simplified by using the formula for the contraction of 
two Levi-Civita (Wald, 1984) symbols to simplify A, b(r), and d2. I find 
that 

A = d,(WaVCa) '/2 sin(cp) 

dl 
b( r )  = (WWr 

d2 -- [(Zala)  2 -  ZaZalblb] 1/2 

(3.10a) 

(3.lOb) 

(3.10c) 

Therefore, �9 is given by 

~ _  P 
[(Zala)2 __ ZaZblblb] 1/2 (3.11) 

In the next section an example involving circular motion is worked. 

4. CIRCULAR MOTION 

In this section an example involving circular motion is worked. I will 
assume that the world line is parametrized by 

Za(v) = ((1 +f12)l/2v, a cos(~or), a sin(a~v), 0} (4.1) 
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where/3e(0,  1), a > 0 ,  and ao)=fl. I also assume that l a=(1 ,  0, 0, 0). For 
this motion, one can show that 

,t.• - a (1 + ]~2)1/2 (4.2a) 

q = R/32(1 +/32)~/~r (4.2c) 
a 

=-P (4.2d) 
a 

Ra(r) = (0, sin(o) v), -cos(o) r), 0)  (4.2e) 

sa(r)  = (0, 0, 0, 1) (4.2f) 

If  T ab is the radiation part of  the energy-momentum tensor, then one can 
show that Tabjalb is given by 

e 2 f14 [(1 + fl2)1/2 + f l ( 1 -  s2) 1'2 cos(~o)] 5 4z  a 2 

' ) 
[(1 + ,6z) 1/2 +/3(1 - s2) 1/2 cos(~o)] 3 (4.3) 

where as= r(1 + fl2)1/2. Introducing the Jacobian of this change of  variable 
and integrating over ~oe [0, 2z)  and s e [ -  1, 1 ] gives the result for the radiated 
power P, 

2 ~4 
P -  (4.4) 

3 a 2 

5. DISCUSSION 

Most derivations of Dirac's equation of  motion with radiation damping 
rely on the Larmor radiation formula. The generalization of the Larmor 
formula given in this paper might be useful in understanding the equations 
of motion for point charges. 
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